
CEWES MSRC/PET TR/98-39

Performance Evaluation of HPF Kernels
on the IBM SP and Cray T3E

by

Gina Goff
Charles Koelbel

Bob Robey
David Torres

07h00498

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

Performance Evaluation of HPF Kernels on the IBM SP and Cray T3E

Gina Goff, Charles Koelbel, Bob Robey, David Torres

June 12, 1998

1 Introduction
Migrating code to parallel machines can be a trying process. Unless users have good software and know

how to exploit it, the promise of enhanced performance may seem more like a mirage than a readily attainable
goal. Unfamiliarity with parallel languages and how their implementations are likely to behave can be a major
obstacle for many users. To improve DOD users' knowledge in this area, we have executed several small tests
representative of the sorts of operations commonly found in scientific applications on the SP and T3E at CEWES
MSRC. The tests are written in High Performance Fortran (HPF), a data-parallel Fortran language available on
both computers, and are a subset of benchmarks originally developed at the University of New Mexico by Bob
Robey and Dave Torres. Their intent was to benchmark the performance of different HPF compilers on several
computers to see how well HPF performed for a variety of implementations and platforms. The tests used for our
research have been modified for CEWES MSRC machines, largely to compensate for the vagaries of floating-
point implementations. Several calculations were changed to formulas having closed-form solutions to strengthen
error checking. These tests are not meant to be absolute measures of the computers themselves, nor of the soft-
ware written for them. Rather, our goal is to provide general guidelines for CEWES MSRC users by showing
them which approaches are likely to yield the best performance in the environments already at their disposal. Our
research was conducted as part of a benchmarking effort for HPF programs on the newer machines at CEWES
MSRC. The results extend, however, to similar machines across DOD.

The tests fall into three categories: communication kernels, intrinsics, and computational kernels. Perform-
ance can be dependent on the idiosyncrasies of the compiler as well as the quirks of the hardware; thus, seemingly
equivalent computations may behave quite differently. For that reason, multiple variants of many computations
were tested, to see if undertaking an operation in a certain way had a significant impact on performance. Portland
Group, Inc.'s HPF compiler was used and timings were taken under "normal" load conditions for both computers;
i.e., the timings were not taken on dedicated machines. Each test was executed using 1, 4, 16, and 64 processors.
The number of iterations that could be performed in approximately 300 seconds of CPU time was counted. For
each test, the number of iterations performed was divided by the actual time spent in the critical loop to yield the
number of iterations per second. (The time required to do array initialization, error checking, etc., was not in-
cluded.) Speedup for 4, 16, and 64 processors was measured by dividing the iterations per second for multiple
processors by the number of iterations per second for the uniprocessor case. We also compared the iterations per
second for "optimized" loops to the iterations per second for the serial version on the same number of processors.
The "uniprocessor" type of speedup indicates how well a particular test scales, while the "serial version" speedup
is meant to show how effective a given optimization is. Test results will be discussed in detail in Sections 2
through 4, while some general conclusions will be presented in Section 5. Tables showing the speedups for all
tests can be found in the appendix.

2 Communication Kernels
Four communication patterns were examined: all-to-all (all the nodes communicate with one another),

gather/scatter (one node communicates with many nodes), reduction (determine minimum, maximum, sum, etc. of
all nodes), and stencil (node communicates with its nearest neighbors).

2

2.1 All-to-All

2.1.1 Speedup Compared to Uniprocessor Case
Two common all-to-all operations, transpose and redistribute, were tested for a 320 by 320 element array.

Table 1 shows the speedup for tests executed on multiple processors, compared to each loop's performance on a
single processor. From left to right, Table 1 lists a number for each test, describes the critical loop for that test,
and shows the speedup at 4, 16, and 64 processors for the SP and T3E.

For the transpose tests, the arrays were distributed (*,BLOCK) and several variations of the basic loop

do j = 1,ny
 do i = 1,nx
 y(i,j) = x(j,i)
 end do
end do

were exercised. In general, use of HPF's INDEPENDENT directive improved performance more than forall did,
and transpose() and forall had about the same level of effectiveness. On the SP, cases where the blocked subscript
position of the array being transposed varied with the outer loop index did better than those cases where the block-
distributed subscript position was controlled by the inner loop, i.e.,

do i = 1,nx
 do j = 1,ny
 y(i,j) = x(j,i)
 end do
end do

performed better than

do j = 1,ny
 do i = 1,nx
 y(i,j) = x(j,i)
 end do
end do.

Both loops performed equally well on the T3E. The best performance on the SP was achieved by loops 6 and 7,
both of them cases where the distributed subscript position varied with the outer loop and both loops were
INDEPENDENT. Such tests also did well on the T3E, but INDEPENDENT loops where the distributed subscript
position varied with the inner loop had slightly better performance.

For the redistribute tests, several methods were used to redistribute two-dimensional arrays, i.e.,

do j=1,ny
 do i=1,nx
 z2(i,j)=z1(i,j)
 end do
end do

where z1 is (*,BLOCK) and z2 is (BLOCK,*). Tests where the distributed subscript position varied with the outer
loop index and both loops were INDEPENDENT had the best speedup for both the SP and T3E. Array syntax
(e.g., z2=z1) and forall had roughly equivalent speedups for both machines. The REDISTRIBUTE directive per-
formed slightly better than forall on the SP, but slightly worse on the T3E.

2.1.2 Speedup Compared to Serial Version
Table 2 shows the speedup for each optimized loop, compared to the performance of its serial version. For

the SP, transpose() had the best speedup, followed by forall. The speedup dropped as the number of processors
increased for INDEPENDENT, but not for transpose() or forall.

3

For the transpose tests run on the T3E, INDEPENDENT had better speedup than forall. The transpose() in-
trinsic and forall had about the same performance, except for loop 9 (which is the basic serial version shown
above plus forall), where the speedup dropped sharply as the number of processors increased.

For the SP, REDISTRIBUTE had the best speedup, with (BLOCK,*) doing slightly better than (*,BLOCK).
INDEPENDENT did well at 64 processors, but had erratic behavior for smaller numbers of processors.

REDISTRIBUTE also had excellent speedup on the T3E, but array syntax and forall did just as well.
INDEPENDENT was "worst", but still provided a speedup of 2000 for 64 processors.

2.2 Gather/Scatter

2.2.1 Speedup Compared to Uniprocessor Case
The basic gather/scatter tests were executed using a 442-element block-distributed source array and a 24 by

24 by 24 target array that was distributed (*,*,BLOCK). The dense gather/scatter tests used a block-distributed
3143-element array. Table 3 shows the speedup for tests run on multiple processors, compared to each test's per-
formance on a single processor. For the basic scatter loop,

do i=1,n
 u(f(i,1),f(i,2),f(i,3)) = v(i)
end do

COPY_SCATTER had the largest speedup, and INDEPENDENT did no better than the serial loop on both ma-
chines. Forall did better than INDEPENDENT on the T3E; the opposite was true for the SP.

For the dense scatter loop,

do i=1,n
 ug1(i) = ug2(ds(i))
end do

INDEPENDENT had the most speedup on the SP, followed by the serial version of the loop. On the T3E, forall
performed best, with the serial version coming in second and the INDEPENDENT loop a distant third.

The basic gather test,

do i=1,n
 v(i) = u(f(i,1),f(i,2),f(i,3))
end do

had the most speedup with forall (loop 8), followed by the serial version, on both machines. When a temporary
variable was used (loop 9), forall fell behind the serial version.

The dense gather,

do i=1,n
 ug2(ds(i)) = ug1(i)
end do

had results similar to the dense scatter test. INDEPENDENT did better than forall on the SP, with the serial ver-
sion coming in third. On the T3E, forall had the most speedup, followed by the serial version.

2.2.2 Speedup Compared to Serial Version
Table 4 shows the speedup for each optimized loop, compared to the performance of its serial equivalent.

For the basic scatter operation, forall had the most speedup on both machines, with COPY_SCATTER coming in
second. The speedups for both loops show a dip at 16 processors on the SP, while the speedups for the T3E are
monotonically increasing. Speedups for UNPACK dropped as the number of processors increased, for both ma-
chines. Both the dense scatter and dense gather tests showed greater speedups for INDEPENDENT than for

4

forall, especially on the T3E.

For the basic gather operation, the SP and T3E had similar results. The forall test without the temporary
variable (loop 8) had larger speedups than the forall test with the temporary, and both loops did better than
INDEPENDENT. Both PACK and the forall with the temporary variable had speedups that decreased as the
number of processors increased.

2.3 Reduction

2.3.1 Speedup Compared to Uniprocessor Case
Two common reduction operations, maximum and sum, were tested using block-distributed 1000-element

arrays. Table 5 shows the speedup for test loops executed on multiple processors, compared to each test's per-
formance on a single processor.

For maximum, we began with the simple loop

do i=1,n
 r=max(x(i),r)
end do

and tried several variations. Using INDEPENDENT with REDUCTION yielded the best speedup for both ma-
chines. On the SP, forall was second-best, followed closely by maxval; maxval did slightly better than forall on
the T3E. Speedup decreased as the number of processors increased for all of the loops.

For sum reduction, i.e.,

do i=1,n
 r=r+x(i)
end do

sum() had the best speedup on the SP, closely followed by the combination of INDEPENDENT and
REDUCTION. On the T3E, INDEPENDENT plus REDUCTION did the best, while sum() and INDEPENDENT
alone were both slightly behind the performance of the basic loop.

When a more complicated sum reduction was considered,

do i=1,n (loop 17)
 w(i)=r+abs(x(i)-u(i))
end do
rsum=sum(w)

where u and w are also block-distributed, the results were somewhat different. Loop 17, as shown above, had the
greatest speedup on the SP, followed by loop 18 (loop 17 plus INDEPENDENT). For the T3E, the order was
reversed. The test

rsum=sum(abs(x-u))

came in third on the T3E, but was seventh on the SP. For both machines, all the other tests using array syntax and
the test using forall had roughly the same amount of speedup. Again, speedup decreased as the number of proces-
sors increased for all tests.

2.3.2 Speedup Compared to Serial Version
Table 6 shows the speedup for each optimized loop, compared to the performance of its serial version. For

the basic "maximum" reduction loop,

do i=1,n
 r=max(x(i),r)
end do

5

maxval had the best speedup on both machines, followed by INDEPENDENT plus REDUCTION. Speedups for
INDEPENDENT + REDUCTION improved as the number of processors increased on the T3E; the opposite was
true for the SP. When we changed the loop slightly to read

do i=1,n
 r=max(abs(x(i)-u(i)),r)
end do

forall had the largest speedups for both machines. For the SP, maxval and INDEPENDENT with REDUCTION
came in second and third; on the T3E, the order was reversed.

For the simple sum reduction test, sum() had the best speedups on both machines, followed by the
INDEPENDENT plus REDUCTION combination. For the more complex

do i=1,n
 w(i)=r+abs(x(i)-u(i))
end do
rsum=sum(w)

most of the variations had the same amount of speedup on both machines, with the exception of INDEPENDENT
(without REDUCTION) and sum(abs(x-u)), which lagged behind.

2.4 Stencil

2.4.1 Speedup Compared to Uniprocessor Case
We performed a simple 5-point stencil computation on a 1000 by 1000 array:

do j=1,n
 do i=1,n
 UN(i,j) = [U(i,j) + U(i+1,j) + U(i-1,j) + U(i,j+1) + U(i,j-1)]/5
 end do
end do

Table 7 shows the speedup for tests run on multiple processors, compared to each test's speedup on one processor.
Loop 4, where both arrays were distributed (*,BLOCK) and forall and eoshift were used, had the greatest speedup
on both machines.

On the SP, tests with forall had only slightly larger speedups than tests using INDEPENDENT, regardless of
the distribution. Tests where the arrays were distributed (BLOCK,BLOCK) had less speedup than the ones using
a (*,BLOCK) distribution.

On the T3E, forall's performance was slightly less than INDEPENDENT's when the arrays were distributed
(*,BLOCK), but the gap was much larger when a (BLOCK,BLOCK) distribution was used. One of the
(BLOCK,BLOCK) tests (loop 5) had speedups similar to the ones seen for the (*,BLOCK) tests, but the other
(BLOCK,BLOCK) loops did not fare so well.

2.4.2 Speedup Compared to Serial Version
Table 8 shows the speedups for tests, compared to the performance of the serial version. On the SP, loops 2

and 3 (arrays distributed (*,BLOCK); either INDEPENDENT or forall used) had the best speedups. The
(BLOCK,BLOCK) loops were next, and had similar speedups. Loop 4, which had the largest speedup relative to
the uniprocessor case, had the lowest speedup here.

For the T3E, loop 3 (arrays distributed (*,BLOCK); both loops INDEPENDENT) easily had the largest
amount of speedup. Loops 6 and 7 were next, but not all the (BLOCK,BLOCK) loops had good speedups: the
two forall tests (6 and 7) were fairly close to each other, but loop 5 (i and j loops INDEPENDENT) lagged far
behind. Unlike the SP, where loops 2 and 3 had equivalent speedups, forall did much better than

6

INDEPENDENT.

3 Intrinsic Kernels
Two intrinsic functions, transpose and redistribute, were tested on 32 by 32 by 32 arrays. For the transpose

tests, arrays were always distributed as (*,*,BLOCK). The redistribute tests changed the distribution from
(*,*,BLOCK) to (*,BLOCK,*). The speedups for both kinds of tests can be found in Tables 9 and 10.

3.1 Transpose

3.1.1 Speedup Compared to Uniprocessor Case
For the transpose tests, the basic loop was

do k=1,nz
 do j=1,ny
 do i=1,nx
 y(i,j,k) = x(i,k,j)
 end do
 end do
end do

For both machines, the best speedup was obtained using colon notation for two dimensions, i.e.,

do i=1,nx
 y(i,:,:) = transpose(x(i,:,:))
end do

On the SP, the use of colon notation in one dimension came in second, followed by the serial version; the opposite
was true on the T3E. For both machines, speedups decreased as the number of processors increased.

3.1.2 Speedup Compared to Serial Version
On both machines, loop 3, which used colon notation in two dimensions, had larger speedups than the use of

colon notation in only one dimension (loop 2). The amount of speedup decreased as the number of processors
increased, for loop 2 on both machines and for loop 3 on the SP. For the T3E, speedup increased with the number
of processors for loop 3.

3.2 Redistribute

3.2.1 Speedup Compared to Uniprocessor Case
The basic loop was

do k=1,nz
 do j=1,ny
 do i=1,nx
 x2(i,j,k) = x(i,j,k)
 end do
 end do
end do

On the SP, array syntax (x2 = x) and REDISTRIBUTE (*,BLOCK,*) had equivalent speedups. Array syntax did
better than REDISTRIBUTE on the T3E. As the number of processors increased, speedups decreased on the SP
and increased on the T3E.

7

3.2.2 Speedup Compared to Serial Version
For both machines, loop 5, which used array syntax, had larger speedups than loop 6, which used

REDISTRIBUTE, although the differences were not huge. Speedups increased as the number of processors in-
creased for both loops.

4 Computational Kernels

4.1 Matrix Addition

4.1.1 Speedup Compared to Uniprocessor Case
Matrix addition was tested for two-dimensional 1000-element arrays. The speedups for both kinds of tests

can be found in Tables 11 and 12. The basic loop was

do j=1,n
 do i=1,n
 C(i,j) = A(i,j) + B(i,j)
 end do
end do

Speedup for the serial loop dropped slightly as the number of processors increased on the SP, but remained con-
stant for the T3E. When the arrays were distributed (*,BLOCK) and array syntax was used (C = A + B), speedups
were considerably larger for the SP than for the T3E.

4.1.2 Speedup Compared to Serial Version
Although the SP had better speedups compared to the single-processor case, the T3E shows more improve-

ment over the serial version of the loop. Thus, the loop scales better for the SP, but is a better optimization for the
T3E.

4.2 Matrix Multiplication

4.2.1 Speedup Compared to Uniprocessor Case
Y = A * X was tested for 500 by 500 matrices, using three different algorithmic approaches: inner product

oriented, column-oriented, and row-oriented. Table 13 shows the speedup for tests executed on multiple proces-
sors versus the single-processor case, for all three approaches.

Inner Product

For the multiplication:

do i=1,n
 do j=1,n
 do k=1,m
 Y(i,j) = Y(i,j) + A(i,k) * X(k,j)
 end do
 end do
end do

where m = n = 500, the SP and T3E had the greatest amount of speedup for loop 5, where the two outermost loops
were INDEPENDENT and all three arrays were distributed (BLOCK,BLOCK).

8

For the SP, the use of INDEPENDENT alone had similar performance to loop 2, where X and Y were dis-
tributed (BLOCK,*) and A was distributed (*,BLOCK.

On the T3E, loop 4 (A and Y distributed (BLOCK,*); X distributed (*,BLOCK); i and j loops
INDEPENDENT) was second-best, followed by the use of INDEPENDENT alone.

For the multiplication:

do i=1,n
 do j=1,m
 do k=1,n
 Y(k,i) = Y(k,i) + A(k,j) * X(j,i)
 end do
 end do
end do

loop 5 (A, X, Y distributed (BLOCK,BLOCK); i and j loops INDEPENDENT) was again the best performer on
both the SP and T3E.

For the SP, loop 2 (all arrays distributed (*,BLOCK)) was slightly better than loop 5 for 4 and 16 processors,
but not for 64. Loop 4, where the i and k loops were INDEPENDENT and all three arrays were distributed, did no
better than loop 3, where i and k were INDEPENDENT and none of the arrays were distributed.

On the T3E, loop 3 had larger speedups than loop 4, and the disparity increased with the number of proces-
sors.

Row-oriented

For the multiplication:

do i=1,n
 do j=1,m
 do k=1,n
 Y(i,k) = Y(i,k) + A(i,j) * X(j,k)
 end do
 end do
end do

loop 5 (all arrays distributed (BLOCK,BLOCK); i and k loops INDEPENDENT) had the greatest speedups on
both machines. This was especially true for the SP, where the speedup for loop 5 dwarfs all the other tests.

For both machines, loop 4 (i and k loops INDEPENDENT; A distributed (*,BLOCK); X and Y distributed
(BLOCK,*)) came in second. Loop 4 was only slightly better than loop 3, where the i and k loops were
INDEPENDENT but none of the arrays were distributed.

4.2.2 Speedup Compared to Serial Version

Inner Product

Table 14 shows the speedup for each "optimized loop", compared to the performance of its serial counter-
part. For the SP, loop 5 (all arrays distributed (BLOCK,BLOCK); outermost two loops INDEPENDENT) had the
greatest speedup, followed by INDEPENDENT alone and loop 2 (X,Y are (BLOCK,*); A is (BLOCK)).

On the T3E, loop 2 had the best speedup, followed by loop 5 and then loop 4 (i and j loops are
INDEPENDENT; X is (*,BLOCK); A,Y are (BLOCK,*)). The use of INDEPENDENT alone achieved speedups
nearly as good as those for loop 4, where the arrays were distributed.

9

Column-oriented

Both the SP and T3E had results similar to those for the inner product approach: for each, the best and sec-
ond-best speedups were for the same loops as before. On the SP, loop 4 was in third place and only slightly be-
hind loop 3, while loop 2 (all arrays are (*,BLOCK)), which did well in the inner product approach, had abysmal
performance for this test.

On the T3E, loop 3 (i and k loops are INDEPENDENT) was third, only slightly ahead of loop 4, which was
third for the inner product case.

Row-oriented

Loop 5 (A,X,Y distributed (BLOCK,BLOCK); i and k loops INDEPENDENT) had the most speedup for
both the SP and T3E. For the SP, loop 2 (all arrays distributed (BLOCK,*)) was second-best, followed by loops 3
and 4, which had equivalent performance.

For the T3E, loop 4 (X,Y are (BLOCK,*); A is (*,BLOCK); i and k loops INDEPENDENT)) had the second
largest speedup, and loop 3 (i and k loops INDEPENDENT) did nearly as well.

4.3 Multiply/Add by Matrix Element

4.3.1 Speedup Compared to Uniprocessor Case
Element-by-element matrix multiplication/addition was tested on 1000 by 1000 arrays. Arrays were distrib-

uted (*,BLOCK) for all tests using distributed arrays. Four serial loops were tested, along with one optimization
for each serial version. Speedups are shown in Tables 15 and 16.

Loop 1 was a straightforward matrix multiply:

do j=1,n
 do i=1,n
 C(i,j) = A(i,j) * B(i,j)
 end do
end do

For loop 2, all arrays were distributed and array syntax was used. Speedups for loop 2 steadily increased on the
SP, but not on the T3E, where the speedup dropped sharply at 16 processors.

In a slightly more complex loop,

C(i,j) = A(i,j) * B(i,j)

was changed to

C(i,j) = A(i,j) * B(i,j) + D(i,j)

Again, the SP had better speedups, both for the serial version and for the optimization, where all arrays were dis-
tributed and array syntax was used. This time, however, the T3E's speedup for the optimized loop peaked at 16
processors and then dropped off.

The next test, loop 5, tested multiplication by a scalar constant, i.e.,

do j=1,n
 do i=1,n
 C(i,j) = A(i,j) * k
 end do
end do

For the SP, the optimized version (A, C distributed; array syntax used) had much better speedups than the serial

10

loop for 4 and 16 processors, but the advantage was slightly less at 64 processors. On the T3E, the speedup was
the same for 4, 16, and 64 processors for loop 5, but peaked at 16 processors for the optimized version.

Loop 7 tested multiplication by and addition with a scalar constant, i.e.,

do j=1,n
 do i=1,n
 C(i,j) = A(i,j) * k + m
 end do
end do

The serial version had a constant speedup on both machines. The SP showed less improvement in speedup for the
optimized version (loop 8) than it did for the optimized variation of loop 5. On the T3E, as before, the speedup
peaked at 16 processors and was not very promising overall.

4.3.2 Speedup Compared to Serial Version
Loop 2,

do j=1,n
 do i=1,n
 C = A * B
 end do
end do

where all arrays were distributed, had the best speedup on both machines. Speedups for the other three optimized
loops dropped off at 64 processors for the T3E; on the SP, this only happened for loop 6 (C = A * k).

5 Conclusions
In general, communications were expensive, especially reduction, but this poor performance was typically

offset by good serial version speedups. Intrinsics also had mediocre uniprocessor-type speedup, but showed ex-
cellent serial version speedups that increased with the number of processors, most notably when array syntax or
REDISTRIBUTE was used. It should be remembered that the test arrays we used were relatively small and that
the uniprocessor performance should be better for much larger arrays.

The use of array syntax (a = b instead of a(i) = b(j), where a and b are arrays) was usually advantageous.
(BLOCK,BLOCK) distributions did extremely well for matrix multiplication but had uneven performance for the
stencil computations, probably because of cache performance. Cases where (*,BLOCK) distributions were used
with INDEPENDENT did better than cases where INDEPENDENT was used alone, but not by much. For
(*,BLOCK) or (BLOCK,*) distributions on the SP, tests where the distributed subscript position of the input array
varied with the outer loop index often did better than those cases where the subscript position was controlled by
the inner loop. Both cases performed equally well on the T3E.

An important aspect of HPF is its promise of a "efficiently portable programming style". That is, when there
are several ways to express the same computation, the relative efficiencies of different variants should not vary
wildly from machine to machine. We tested this aspect of HPF as follows: for any test that could be expressed in
more than one way, we ranked the variations according to their speedups (over single-processor execution) for
each machine and then counted how many variants were ranked in the top two or three on both computers. Table
17 shows how many loops were ranked as being in the top two or three on both machines, and also how many
loops were ranked in the same order on both machines. Figure 1, which summarizes Table 17, indicates how
many tests were top performers on both the SP and T3E. For example, the first set of columns in Figure 1 shows
that for 16 tests, only one variant placed in the top two on both machines, while there were 12 tests that had the
same variants ranked in the top two. The second set of columns shows similar results when comparing the top
three performers. The third set of columns indicates how many variants appeared in the top rankings in the same
order, i.e., there were 10 cases where only the first-place finisher was the same, but 5 cases where both machines

11

had the same variants in first, second, and third place. This implies that programs that scale well on one computer
will probably have acceptable if not optimal behavior on the other.

Speedup compared to uniprocessor performance indicates how well a test scales, while speedup compared to
the serial version's performance indicates how much benefit is derived from that particular optimization. Ideally,
we would like the constructs that scale the best to also optimize well. Figure 2, which summarizes Table 18, ad-
dresses the question of how many loops performed well according to both of our definitions of speedup. For each
machine, we ranked the variants twice: once according to uniprocessor speedup and once according to serial
version speedup. We then compared the rankings to determine whether the same variants were ranked highly for
both kinds of speedup. Figure 2 shows two sets of columns for each machine. The set on the left indicates how
many variants were ranked in the top two for both kinds of speedup, while the set on the right shows how many
variants were ranked in the top three. For example, on the SP, there were eight cases where two out of the three
highest-ranked variants for both definitions of speedup were the same and two cases where all three of the highest-
ranked variants were the same. Figure 2 shows that many of the best loops had both kinds of speedup, indicating
that variants that scale well also tend to be good optimizations.

0
2

4

6
8

10

12

14
16

in top 2 # in top 3 same order

0
1
2
3

Figure 1 — # of Loops Ranked in Top 2 or 3 on Both Machines

12

6 Acknowledgements
This work was supported in part by a grant of HPC time from the DoD HPC Modernization Program.

0
1
2
3
4
5
6
7
8

out of 2 # out of 3 # out of 2 # out of 3

0
1
2
3

T3ESP

Figure 2 — # of Loops Ranked Highly for Both Kinds of Speedup

13

Appendix A: Detailed Test Results

 SP T3E
number of processors: 4 16 64 4 16 64

Transpose for (*,BLOCK) distributions

1
do j=1,ny
 do i=1,nx
 y(i,j)=x(j,i)

0.1 0.4 0.1 0.8 0.5 0.2

2
do i=1,nx
 do j=1,ny
 y(i,j)=x(j,i)

0.6 0.4 0.1 0.8 0.5 0.2

3
do j=1,ny
 do i=1,nx
 y(j,i)=x(i,j)

0.6 0.4 0.1 0.8 0.5 0.2

4
do i=1,nx
 do j=1,ny
 y(j,i)=x(i,j)

0.1 0.4 0.1 0.8 0.5 0.2

5
test 1; both loops
INDEPENDENT

2.4 5.1 0.2 4.5 12.7 7.5

6
test 2; both loops
INDEPENDENT

3.9 7.8 2.8 4.5 13.6 27.7

7
test 3; both loops
INDEPENDENT

3.9 7.8 1.7 4.6 13.8 28.1

8
test 4; both loops
INDEPENDENT

2.6 5.0 0.1 4.6 14.5 28.1

9 test 1, with forall 2.5 4.8 2.7 3.9 6.0 0.6
10 test 2, with forall 2.5 4.9 3.7 3.9 7.3 10.8
11 test 3, with forall 2.5 4.9 3.7 3.8 7.2 10.7
12 test 4, with forall 2.5 4.8 3.1 3.8 7.2 10.8
13 y=transpose(x) 2.5 4.8 3.7 3.9 7.3 10.8
Redistribute from (*,BLOCK) to (BLOCK,*)

14
do j=1,ny
 do i=1,nx
 z2(i,j)=z1(i,j)

0.6 0.4 0.1 0.8 0.5 0.2

15
do i=1,nx
 do j=1,ny
 z2(i,j)=z1(i,j)

0.1 0.4 0.1 0.8 0.5 0.2

16
test 14; both loops
INDEPENDENT

0.1 1.5 1.3 3.7 8.8 12.7

17
test 15; both loops
INDEPENDENT

3.5 8.4 9.8 4.2 14.2 19.1

18 test 14, with forall 0.5 0.9 0.6 4.1 5.7 5.2
19 test 15, with forall 0.5 0.9 0.5 4.0 5.7 5.2
20 z2=z1 0.5 0.9 0.5 4.1 5.6 5.2

21
!HPF$ REDISTRIBUTE
z3(BLOCK,*)

0.5 0.9 0.7 3.4 4.3 4.4

22
!HPF$ REDISTRIBUTE
z3(*,BLOCK)

0.5 1.0 0.7 3.2 4.4 3.8

Table 1 — All-to-All, Speedup Compared to Uniprocessor Case

14

 SP T3E
number of processors: 1 4 16 64 1 4 16 64

Transpose for *,BLOCK distributions

1 - serial
version

do j=1,ny
 do i=1,nx
 y(i,j)=x(j,i)

5 vs. 1 loops INDEPENDENT 62 1565 889 76 27 153 702 970
9 vs. 1 with forall 72 1913 986 1573 62 304 767 179
13 vs. 1 using transpose() 72 1913 986 2132 62 303 941 3233

2 - serial
version

do i=1,nx
 do j=1,ny
 y(i,j)=x(j,i)

6 vs. 2 loops INDEPENDENT 44 292 849 935 28 165 824 3914
10 vs. 2 with forall 76 324 928 2112 60 304 948 3262

3 - serial
version

do j=1,ny
 do i=1,nx
 y(j,i)=x(i,j)

7 vs. 3 loops INDEPENDENT 41 275 837 569 27 165 817 3909
11 vs. 3 with forall 70 312 914 2110 60 299 923 3258

4 - serial
version

do i=1,nx
 do j=1,ny
 y(j,i)=x(i,j)

8 vs. 4 loops INDEPENDENT 59 1645 840 36 26 158 808 3678
12 vs. 4 with forall 70 1864 945 1780 60 302 928 3269
Redistribute from *,BLOCK to BLOCK,*

14 - serial
version

do j=1,ny
 do i=1,nx
 z2(i,j)=z1(i,j)

16 vs. 14 loops INDEPENDENT 194 29 775 2118 36 169 659 2255
18 vs. 14 with forall 385 313 916 1824 153 796 1832 3909
20 vs. 14 z2=z1 385 320 916 1683 151 796 1766 3909

21 vs. 14
REDISTRIBUTE
z3(BLOCK,*)

392 335 933 2118 180 783 1596 3909

22 vs. 14
REDISTRIBUTE
z3(*,BLOCK)

349 335 933 1876 194 796 1766 3665

15 - serial
version

do i=1,nx
 do j=1,ny
 z2(i,j)=z1(i,j)

17 vs. 15 loops INDEPENDENT 28 988 640 2137 21 117 640 2017
19 vs. 15 with forall 421 1890 977 1743 153 794 1850 3900

Table 2 — All-to-All, Speedup Compared to Serial Version

15

 SP T3E
number of processors: 4 16 64 4 16 64

scatter

1
do i=1,n
 u(f(i,1),f(i,2),f(i,3))=v(i)

0.95 0.99 0.63 0.80 0.85 0.42

2 with INDEPENDENT 0.97 0.97 0.64 0.82 0.87 0.43
3 with forall 0.79 0.71 0.46 1.00 1.23 0.81

4
u=UNPACK(v,MASK=
 maskf, FIELD=(0,0))

0.07 0.04 0.03 0.07 0.04 0.03

5
u=COPY_SCATTER
 (v,zero_u,f(:,1),f(:,2)
 f(:,3),truev)

1.32 0.85 0.86 1.60 2.20 1.55

gather

6
do i=1,n
 v(i)=u(f(i,1),f(i,2),f(i,3))

0.75 0.84 0.38 0.81 0.86 0.42

7 with INDEPENDENT 0.12 0.06 0.02 0.49 0.15 0.03

8
forall(i=1:n)
 v(i)=u(f(i,1),f(i,2),f(i,3))

0.77 0.63 0.33 0.95 1.18 0.80

9
forall(i=1:n)
 t(i)=u(f(i,1),f(i,2),f(i,3))
v=t

0.51 0.30 0.12 0.58 0.42 0.22

10
v=PACK(u,MASK=
 maskf)

0.06 0.03 0.02 0.06 0.03 0.02

dense scatter

11
do i=1,n
 ug1(i) = ug2(ds(i))

0.14 0.64 0.98 0.75 0.55 0.26

12 with INDEPENDENT 1.26 1.14 0.92 0.53 0.35 0.18
13 with forall 0.12 0.11 0.10 1.46 2.33 2.60

dense gather

14
do i=1,n
 ug2(ds(i)) = ug1(i)

0.001 0.002 0.002 0.76 0.55 0.26

15 with INDEPENDENT 1.26 1.16 1.15 0.57 0.39 0.20
16 with forall 1.08 0.98 0.93 1.49 2.40 2.70

Table 3 — Gather/Scatter, Speedup Compared to Uniprocessor Case

16

 SP T3E
number of processors: 1 4 16 64 1 4 16 64

scatter
1 - serial
version

do i=1,n
 u(f(i,1),f(i,2),f(i,3))=v(i)

2 vs. 1 with INDEPENDENT 1 1 1 1 1 1 1 1
3 vs. 1 with forall 16 13 11 12 22 28 32 43

4 vs. 1
u=UNPACK(v,MASK=
 maskf, FIELD=(0,0))

0.4 0.03 0.02 0.02 0.94 0.09 0.05 0.07

5 vs. 1
u=COPY_SCATTER
 (v,zero_u,f(:,1),f(:,2)
 f(:,3),truev)

7 10 6 10 9 18 23 33

gather
6 - serial
version

do i=1,n
 v(i)=u(f(i,1),f(i,2),f(i,3))

7 vs. 6 with INDEPENDENT 11 2 0.8 0.7 11 7 2 1

8 vs. 6
forall(i=1:n)
 v(i)=u(f(i,1),f(i,2),f(i,3))

16 16 12 14 22 26 30 42

9 vs. 6
forall(i=1:n)
 t(i)=u(f(i,1),f(i,2),f(i,3))
v=t

13 9 5 4 22 16 11 12

10 vs. 6
v=PACK(u,MASK=
 maskf)

0.6 0.04 0.02 0.03 1 0.09 0.05 0.07

dense scatter
11 - serial
version

do i=1,n
 ug1(i) = ug2(ds(i))

12 vs. 11 with INDEPENDENT 20 178 35 18 0.9 0.7 0.6 0.6
13 vs. 11 with forall 218 193 38 23 35 67 147 343
dense gather
14 - serial
version

do i=1,n
 ug2(ds(i)) = ug1(i)

15 vs. 14 with INDEPENDENT 0.02 21 13 13 0.4 0.3 0.3 0.3
16 vs. 14 with forall 0.05 43 26 25 34 67 151 352

Table 4 — Gather/Scatter, Speedup Compared to Serial Version

17

 SP T3E
number of processors: 4 16 64 4 16 64

1
do i=1,n
 r=max(x(i),r)

0.04 0.02 0.01 0.06 0.03 0.02

2
test 1, with
INDEPENDENT

0.04 0.02 0.01 0.06 0.04 0.03

3
test 1, with
INDEPENDENT and
REDUCTION

0.27 0.11 0.05 1.40 1.22 0.97

4 r=maxval(x) 0.23 0.13 0.06 0.57 0.39 0.30

5
do i=1,n
 r=max(abs(x(i)-u(i),r)

0.04 0.02 0.01 0.05 0.03 0.02

6
test 5, with
INDEPENDENT

0.04 0.02 0.01 0.05 0.03 0.02

7
test 5, with
INDEPENDENT and
REDUCTION

0.30 0.17 0.07 1.42 1.28 1.02

8 test 5, with forall 0.26 0.13 0.10 0.85 0.66 0.51
9 test 5, with maxval 0.21 0.14 0.06 0.89 0.70 0.60

10
do i=1,n
 r=r+x(i)

0.03 0.02 0.01 0.06 0.04 0.03

11
test 10, with
INDEPENDENT

0.03 0.02 0.01 0.05 0.03 0.02

12
test 10, with
INDEPENDENT and
REDUCTION

0.06 0.03 0.01 1.32 1.16 0.91

13 r=sum(x) 0.07 0.03 0.02 0.44 0.30 0.22

14
do i=1,n
 r=r+abs(x(i)-u(i))

0.04 0.02 0.01 0.05 0.03 0.02

15
test 14, with
INDEPENDENT

0.03 0.02 0.01 0.05 0.03 0.02

16
test 14, with
INDEPENDENT and
REDUCTION

0.12 0.05 0.03 1.37 1.23 0.97

17

do i=1,n
 w(i)=r+abs(x(i)-u(i))
end do
rsum=sum(w)

0.26 0.15 0.08 0.96 0.90 0.84

18
test 17, with
INDEPENDENT

0.21 0.11 0.06 1.48 1.37 1.10

19 test 17, with forall 0.17 0.09 0.05 0.70 0.53 0.41

20
w(:)=abs(x(:)-u(:))
rsum=sum(w(:))

0.17 0.09 0.05 0.69 0.52 0.40

21
w(:)=abs(x(:)-u(:))
rsum=sum(w)

0.16 0.09 0.05 0.67 0.50 0.39

22
w=abs(x-u)
rsum=sum(w)

0.17 0.09 0.06 0.68 0.51 0.39

23 rsum=sum(abs(x-u)) 0.04 0.07 0.04 0.81 0.63 0.53

Table 5 — Reduction, Speedup Compared to Uniprocessor Case

18

 SP T3E
number of processors: 1 4 16 64 1 4 16 64

1 - serial
version

do i=1,n
 r=max(x(i),r)

2 vs. 1 with INDEPENDENT 1 1 1 1 1 1 1 1

3 vs. 1
with INDEPENDENT
and REDUCTION

11 83 62 41 3 80 119 134

4 vs. 1 with maxval 13 85 81 62 11 106 125 137
5 - serial
version

do i=1,n
 r=max(abs(x(i)-u(i),r)

6 vs. 5 with INDEPENDENT 1 1 1 1 1 1 1 1

7 vs. 5
with INDEPENDENT
and REDUCTION

20 157 155 92 5 151 233 261

8 vs. 5 with forall 20 135 117 147 11 181 241 263
9 vs. 5 with maxval 23 127 152 103 8 144 193 235
10 - serial
version

do i=1,n
 r=r+x(i)

11 vs. 10 with INDEPENDENT 1 1 1 1 1 1 1 1

12 vs. 10
with INDEPENDENT
and REDUCTION

36 80 79 51 4 81 121 133

13 vs. 10 r=sum(x) 36 87 80 73 16 110 126 135
14 - serial
version

do i=1,n
 r=r+abs(x(i)-u(i))

15 vs. 14 with INDEPENDENT 1 1 1 1 1 1 1 1

16 vs. 14
with INDEPENDENT
and REDUCTION

40 139 95 87 5 149 230 256

17 - serial
version

do i=1,n
 w(i)=r+abs(x(i)-u(i))
end do
rsum=sum(w)

18 vs. 17 with INDEPENDENT 1 1 1 1 2 3 3 3
19 vs. 17 with forall 2 1 1 1 6 4 4 3

20 vs. 17
w(:)=abs(x(:)-u(:))
rsum=sum(w(:))

2 1 1 1 6 5 4 3

21 vs. 17
w(:)=abs(x(:)-u(:))
rsum=sum(w)

2 1 1 1 7 5 4 3

22 vs. 17
w=abs(x-u)
rsum=sum(w)

2 1 1 1 6 5 4 3

23 vs. 17 rsum=sum(abs(x-u)) 2 0.3 1 1 4 3 3 3

Table 6 — Reduction, Speedup Compared to Serial Version

19

 SP T3E
number of processors: 4 16 64 4 16 64

1

do j=1,n
 do i=1,n
 UN(i,j) = (U(i,j) +
 U(i+1,j) + U(i-1,j) +
 U(i,j+1) + U(i,j-1))/5

1.0 1.0 0.9 1.2 1.2 1.2

2
U, UN are (*,BLOCK);
i,j loops INDEPENDENT

3.9 13.9 34.4 5.5 16.0 40.9

3
U, UN are (*,BLOCK);
with forall

3.4 13.8 34.3 4.1 15.2 40.0

4
U, UN are (*,BLOCK);
with forall and eoshift

3.8 14.1 35.6 3.6 15.0 43.6

5
U, UN (BLOCK,BLOCK);
i,j loops INDEPENDENT

3.5 11.6 27.7 4.2 15.5 41.1

6
U, UN (BLOCK,BLOCK);
with forall

3.6 11.6 27.9 3.6 10.6 27.7

7
U, UN (BLOCK,BLOCK);
with forall and eoshift

3.6 11.8 28.3 3.6 10.9 28.3

Table 7 — 5-Point Stencil, Speedup Compared to Uniprocessor Case

 SP T3E
number of processors: 1 4 16 64 1 4 16 64

1 - serial
version

do j=1,n
 do i=1,n
 UN(i,j) = (U(i,j) +
 U(i+1,j) + U(i-1,j) +
 U(i,j+1) + U(i,j-1))/5

2 vs. 1
U, UN are (*,BLOCK);
i,j loops INDEPENDENT

0.7 2.8 10.1 26.4 0.3 1.4 4.2 10.8

3 vs. 1
U, UN are (*,BLOCK);
with forall

0.7 2.5 10.0 26.4 2.4 8.2 30.5 80.6

4 vs. 1
U, UN are (*,BLOCK);
with forall and eoshift

0.5 1.9 7.1 19.0 0.8 2.3 9.7 28.3

5 vs. 1
U, UN (BLOCK,BLOCK);
i,j loops INDEPENDENT

0.7 2.4 8.2 20.7 0.4 1.3 5.0 13.3

6 vs. 1
U, UN (BLOCK,BLOCK);
with forall

0.7 2.5 8.2 20.7 2.1 6.3 18.7 48.7

7 vs. 1
U, UN (BLOCK,BLOCK);
with forall and eoshift

0.7 2.4 8.1 20.5 2.0 6.0 18.2 47.3

Table 8 — 5-point Stencil, Speedup Compared to Serial Version

20

 SP T3E
number of processors: 4 16 64 4 16 64

1

do k=1,nz
 do j=1,ny
 do i=1,nx
 y(i,j,k)=x(i,k,j)

0.1 0.5 0.2 0.7 0.5 0.2

2

do k=1,nz
 do j=1,ny
 y(:,k,j) =
 transpose(x(:,j,k))

0.5 0.2 0.1 0.6 0.3 0.1

3
do i=1,nx
 y(i,:,:) =
 transpose(x(i,:,:))

1.1 0.7 0.3 2.3 1.7 1.0

4

do k=1,nz
 do j=1,ny
 do i=1,nx
 x2(i,j,k)=x(i,j,k)

0.7 0.6 0.2 0.8 0.5 0.3

5 x2=x 0.6 0.6 0.3 3.4 4.5 6.3

6
REDISTRIBUTE
x2(*,BLOCK,*)

0.6 0.6 0.3 3.3 4.6 5.8

Table 9 — Intrinsics, Speedup Compared to Uniprocessor Case

 SP T3E
number of processors: 1 4 16 64 1 4 16 64

1 - serial
version

do k=1,nz
 do j=1,ny
 do i=1,nx
 y(i,j,k)=x(i,k,j)

2 vs. 1

do k=1,nz
 do j=1,ny
 y(:,k,j) =
 transpose(x(:,j,k))

19 81 8 5 20 16 11 7

3 vs. 1
do i=1,nx
 y(i,:,:) =
 transpose(x(i,:,:))

28 289 45 41 33 109 115 151

4 - serial
version

do k=1,nz
 do j=1,ny
 do i=1,nx
 x2(i,j,k)=x(i,j,k)

5 vs. 4 x2=x 464 384 465 559 210 940 1797 4894

6 vs. 4
REDISTRIBUTE
x2(*,BLOCK,*)

439 367 457 496 204 901 1774 4405

Table 10 — Intrinsics, Speedup Compared to Serial Version

21

 SP T3E
number of processors: 4 16 64 4 16 64

1
do j=1,n
 do i=1,n
 C(i,j) = A(i,j) + B(i,j)

1.0 0.9 0.9 0.8 0.8 0.8

2
A, B, C are (*,BLOCK);
C = A + B

4.2 14.2 58.0 1.4 5.6 21.6

Table 11 — Matrix Addition, Speedup Compared to Uniprocessor Case

 SP T3E
number of processors: 1 4 16 64 1 4 16 64

1 - serial
version

do j=1,n
 do i=1,n
 C(i,j) = A(i,j) + B(i,j)

2 vs. 1
A, B, C are
(*,BLOCK); C = A + B

1 5 17 69 6 10 41 158

Table 12 — Matrix Addition, Speedup Compared to Serial Version

22

 SP T3E

number of processors: 4 16 64 4 16 64
inner product

1

do i=1,n
 do j=1,n
 do k=1,m
 Y(i,j) = Y(i,j) +
 A(i,k) * X(k,j)

1.0 1.0 1.0 1.0 1.0 1.0

2
X, Y are (BLOCK,*);
A is (*,BLOCK)

10.0 48.2 45.7 4.5 7.3 25.2

3
i and j loops are
INDEPENDENT

10.2 50.8 45.1 4.1 16.0 32.3

4
A, Y are (BLOCK,*);
X is (*,BLOCK); i, j loops
INDEPENDENT

10.1 42.2 24.8 4.0 15.8 35.0

5
A, X, Y distributed
(BLOCK ,BLOCK); i, j
loops INDEPENDENT

7.0 36.5 60.5 4.0 16.2 42.3

column-oriented
1 do i=1,n

 do j=1,m
 do k=1,n
 Y(k,i) = Y(k,i) +
 A(k,j) * X(j,i)

1.0 1.0 1.0 1.0 1.0 1.0

2 A, X, Y are (*,BLOCK) 4.1 13.9 26.5 4.0 13.8 20.7

3
i and k loops are
INDEPENDENT

3.6 5.6 2.9 4.1 16.3 58.9

4
A, Y are (*,BLOCK);
X is (BLOCK,*); i, k loops
INDEPENDENT

3.6 5.5 2.7 4.1 15.6 43.4

5
A, X, Y distributed
(BLOCK ,BLOCK); i, k
loops INDEPENDENT

3.8 12.2 29.5 4.6 18.1 68.8

row-oriented

1

do i=1,n
 do j=1,m
 do k=1,n
 Y(i,k) = Y(i,k) +
 A(i,j) * X(j,k)

1.0 0.8 0.8 1.0 1.0 1.0

2 A, X, Y are (BLOCK,*) 9.0 42.0 25.8 4.5 5.9 1.7

3
i and k loops are
INDEPENDENT

4.6 15.7 36.2 5.1 20.5 48.2

4
X, Y are (BLOCK,*);
A is (*,BLOCK); i, k
loops INDEPENDENT

4.6 15.8 37.4 5.0 20.8 62.5

5
A, X, Y distributed
(BLOCK ,BLOCK); i, k
loops INDEPENDENT

7.4 551 1361 5.0 21.0 79.8

Table 13 — Matrix Multiply, Speedup Compared to Uniprocessor Case

23

 SP T3E
number of processors: 1 4 16 64 1 4 16 64

inner product

1 - serial
version

do i=1,n
 do j=1,n
 do k=1,m
 Y(i,j) = Y(i,j) +
 A(i,k) * X(k,j)

2 vs. 1
X, Y are (BLOCK,*);
A is (*,BLOCK)

1 9 47 44 2 11 18 62

3 vs. 1
i and j loops are
INDEPENDENT

1 10 51 45 1 2 9 19

4 vs. 1
A, Y are (BLOCK,*);
X is (*,BLOCK); i, j
loops INDEPENDENT

1 10 42 25 1 2 10 21

5 vs. 1
A, X, Y distributed
(BLOCK ,BLOCK); i, j
loops INDEPENDENT

1 7 37 61 1 2 10 26

column-oriented

1 - serial
version

do i=1,n
 do j=1,m
 do k=1,n
 Y(k,i) = Y(k,i) +
 A(k,j) * X(j,i)

2 vs. 1 A, X, Y are (*,BLOCK) 0.1 0.4 1 3 2 10 33 49

3 vs. 1
i and k loops are
INDEPENDENT

2 5 9 4 1 3 11 39

4 vs. 1
A, Y are (*,BLOCK);
X is (BLOCK,*); i, k
loops INDEPENDENT

2 5 8 4 1 3 11 29

5 vs. 1
A, X, Y distributed
(BLOCK ,BLOCK); i, k
loops INDEPENDENT

2 6 18 45 1 3 11 41

row-oriented

1 - serial
version

do i=1,n
 do j=1,m
 do k=1,n
 Y(i,k) = Y(i,k) +
 A(i,j) * X(j,k)

2 vs. 1 A, X, Y are (BLOCK,*) 3 23 130 81 2 11 14 4

3 vs. 1
i and k loops are
INDEPENDENT

1 4 16 37 1 2 9 21

4 vs. 1
X, Y are (BLOCK,*);
A is (*,BLOCK); i, k
loops INDEPENDENT

1 4 16 38 1 2 9 28

5 vs. 1
A, X, Y distributed
(BLOCK ,BLOCK); i, k
loops INDEPENDENT

1 6 553 1372 1 2 10 36

Table 14 — Matrix Multiply, Speedup Compared to Serial Version

24

 SP T3E
number of processors: 4 16 64 4 16 64

1
do j=1,n
 do i=1,n
 C(i,j)=A(i,j) * B(i,j)

1.0 0.9 0.9 0.8 0.8 0.8

2
A,B,C are (*,BLOCK);
C = A * B

3.9 14.3 59.0 2.8 0.3 43.4

3

do j=1,n
 do i=1,n
 C(i,j)=A(i,j) * B(i,j)
 + D(i,j)

0.9 0.9 0.9 0.8 0.8 0.8

4
arrays are (*,BLOCK);
C = A * B + D

3.8 13.0 51.4 1.5 5.9 1.5

5
do j=1,n
 do i=1,n
 C(i,j)=A(i,j) * k

1.1 1.1 60.3 0.9 0.9 0.9

6
A,C are (*,BLOCK);
C = A * k

4.8 17.1 68.4 1.6 7.0 1.6

7
do j=1,n
 do i=1,n
 C(i,j)=A(i,j) * k + m

1.0 1.0 1.0 0.9 0.9 0.9

8
A,C are (*,BLOCK);
C = A * k + m

4.4 16.1 52.5 1.7 6.8 1.7

Table 15 — Mult/Add by Matrix Elt, Speedup Compared to Uniprocessor Case

 SP T3E
number of processors: 1 4 16 64 1 4 16 64

1 - serial
version

do j=1,n
 do i=1,n
 C(i,j)=A(i,j) * B(i,j)

2 vs. 1 A, B, C are (*,BLOCK) 1.1 4.2 16.9 70.3 2.9 10.3 1.1 157.8

3 - serial
version

do j=1,n
 do i=1,n
 C(i,j)=A(i,j) * B(i,j)
 + D(i,j)

4 vs. 3 A, B, C are (*,BLOCK) 1.2 4.9 16.6 67.0 5.3 10.1 40.5 10.1

5 - serial
version

do j=1,n
 do i=1,n
 C(i,j)=A(i,j) * k

6 vs. 5 A, C are (*,BLOCK) 1.0 4.6 16.3 1.2 6.8 12.6 53.6 12.6

7 - serial
version

do j=1,n
 do i=1,n
 C(i,j)=A(i,j) * k + m

8 vs. 7 A, C are (*,BLOCK) 1.0 4.6 16.8 55.2 6.7 12.8 52.5 12.8

Table 16 — Mult/Add by Matrix Element, Speedup Compared to Serial Version

25

table test type # same out
 of top two

 # same out
 of top three

same order?

Table 1 transpose 0 2 none
redistribute 1 2 same #1

Table 2 transpose 0 1 none
redistribute 1 2 same #1

Table 3 scatter 1 2 same #1
gather 2 3 top 3
dense scatter 1 3 none
dense gather 1 3 none

Table 4 scatter 2 3 top 3
gather 2 3 top 3
dense scatter 2 – top 2
dense gather 2 – top 2

Table 5 max 1 2 same #1
sum 1 2 same #1
sum() with abs 2 3 none

Table 6 max 1 3 none
sum 2 3 top 3
sum() with abs 2 3 none

Table 7 stencil 1 2 same #1
Table 8 stencil 1 2 none
Table 9 transpose 1 3 same #1

REDISTRIBUTE 2 3 none
Table 10 transpose 2 – top 2

REDISTRIBUTE 2 – top 2
Table 13 inner 1 2 same #1

column 1 2 same #1
row 2 3 top 3

Table 14 inner 1 2 none
column 1 2 none
row 1 2 same #1

Table 17 — # of Loops Ranked in the Top 2 or 3 on Both Machines

26

 tables test type SP — same out of top 3 T3E — same out of top 3
Tables 1 & 2 transpose 0 2

redistribute 2 2
Tables 3 & 4 scatter 2 3

gather 2 2
dense scatter 1 of 2 1 of 2
dense gather 2 of 2 1 of 2

Tables 5 & 6 max 2 2
sum 3; same order 2
sum() with abs 2 1

Tables 7 & 8 stencil 2 1
Tables 9 & 10 transpose 2 of 2; same order 2 of 2; same order

REDISTRIBUTE 2 of 2; same order 2 of 2; same order
Tables 13 & 14 inner 3; same order 2

column 2; same #1 2
row 2; same #1 3; same order

Table 18 — # of Loops Ranked Highly for Both Kinds of Speedup

